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Community-level respiration of prokaryotic
microbes may rise with global warming
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Understanding how the metabolic rates of prokaryotes respond to temperature is funda-

mental to our understanding of how ecosystem functioning will be altered by climate change,

as these micro-organisms are major contributors to global carbon efflux. Ecological metabolic

theory suggests that species living at higher temperatures evolve higher growth rates than

those in cooler niches due to thermodynamic constraints. Here, using a global prokaryotic

dataset, we find that maximal growth rate at thermal optimum increases with temperature for

mesophiles (temperature optima ≲45 �C), but not thermophiles (≳45 �C). Furthermore,

short-term (within-day) thermal responses of prokaryotic metabolic rates are typically more

sensitive to warming than those of eukaryotes. Because climatic warming will mostly impact

ecosystems in the mesophilic temperature range, we conclude that as microbial communities

adapt to higher temperatures, their metabolic rates and therefore, biomass-specific CO2

production, will inevitably rise. Using a mathematical model, we illustrate the potential global

impacts of these findings.

https://doi.org/10.1038/s41467-019-13109-1 OPEN

1 Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK. 2 Environment and Sustainability Institute, University of
Exeter, Penryn, Cornwall TR10 9EZ, UK. *email: thomas.smith1@imperial.ac.uk; s.pawar@imperial.ac.uk

NATURE COMMUNICATIONS |         (2019) 10:5124 | https://doi.org/10.1038/s41467-019-13109-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4038-9722
http://orcid.org/0000-0002-4038-9722
http://orcid.org/0000-0002-4038-9722
http://orcid.org/0000-0002-4038-9722
http://orcid.org/0000-0002-4038-9722
http://orcid.org/0000-0002-1749-3417
http://orcid.org/0000-0002-1749-3417
http://orcid.org/0000-0002-1749-3417
http://orcid.org/0000-0002-1749-3417
http://orcid.org/0000-0002-1749-3417
http://orcid.org/0000-0002-2615-3932
http://orcid.org/0000-0002-2615-3932
http://orcid.org/0000-0002-2615-3932
http://orcid.org/0000-0002-2615-3932
http://orcid.org/0000-0002-2615-3932
http://orcid.org/0000-0001-8375-5684
http://orcid.org/0000-0001-8375-5684
http://orcid.org/0000-0001-8375-5684
http://orcid.org/0000-0001-8375-5684
http://orcid.org/0000-0001-8375-5684
mailto:thomas.smith1@imperial.ac.uk
mailto:s.pawar@imperial.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


www.manaraa.com

A general understanding of how individual organisms
respond to changing environmental temperature is
necessary for predicting how populations, communities

and ecosystems will respond to a changing climate1–4. Because
fundamental physiological rates of ectotherms are directly affected
by environmental temperature3,5,6, climatic warming may be
expected to lead to ectotherm communities with higher metabolic
rates on average3,7. How environmental temperature drives
metabolic rates of prokaryotes (bacteria and archaea) is of parti-
cular importance because they are globally ubiquitous, estimated
to comprise up to half of the planet’s global biomass8, and are the
end users of the majority of net primary production9,10. Therefore,
climate-driven changes in prokaryotic metabolic rates are expected
to significantly alter ecosystem productivity, nutrient cycling and
carbon flux9–14. Indeed, increased carbon efflux (CO2 emission)
has been observed in experimental measures of soil CO2 loss to
warming15,16, as well as the responses of other microbial metabolic
processes to increased temperature such as methanogenesis17.
However, whether the short-term (timescales of minutes to days)
thermal responses of prokaryotes can be compensated by accli-
mation (physiological phenotypic plasticity) or longer-term
(timescales of months, years or longer) evolutionary adapta-
tion18–20 is currently unclear. The most recent study to investigate
this idea concluded that both short- and long-term responses of
ecosystem-level heterotrophic respiration were similar21. How-
ever, this study quantified short-term responses by aggregating
day-level carbon fluxes across sites, and did not have data on the
direct respiratory contributions of prokaryotyes per se.

The short term, or instantaneous response of metabolic traits of
individual organisms to changing temperature (the intra-specific
thermal response) is typically unimodal, with the thermal per-
formance curve (TPC) of the trait increasing with temperature up
to a peak value (Tpk), before decreasing as high temperature
becomes detrimental to metabolic or cellular processes2,22 (Fig. 1).
The Tpk for maximal population growth rate (rmax, a direct
measure of fitness, often used as a proxy for metabolic rate),
sometimes termed the thermal optimum, is expected to corre-
spond to the typical thermal environment in which the organism’s
population has evolved (the long-term response)22,23. The Hotter-
is-Better (HiB) hypothesis posits that trait performance at Tpk
(henceforth denoted by Ppk) is also expected to increase inevitably
in a similar manner to the short-term intra-specific response,
because of the positive temperature-dependence of rate-limiting

enzymes operating at their thermal optimum (a thermodynamic
constraint), i.e., Ppk increases with Tpk (Fig. 1a)22–24. Thus this
hypothesis essentially links the short-term TPC of trait perfor-
mance to the longer-term performance mediated by evolution.
The HiB hypothesis is also implicit in the universal temperature-
dependence concept of the Metabolic Theory of Ecology
(MTE)5,6,25. However, whether the HiB hypothesis holds across
organisms and environments is a question that is still
debated24,26–28. Deviations from a HiB pattern would indicate
that either thermodynamic constraints do not exist, or are com-
pensated for by other mechanisms. In particular, an alternative
hypothesis is that natural selection acts to override thermo-
dynamic constraints, allowing peak trait performance and fitness
to be, on average, equalised across different adaptation tempera-
tures (Fig. 1b)24. Intermediate scenarios are also possible, where
adaptation of optimal trait performance or fitness is only partially
constrained thermodynamically (Fig. 1c). Moreover, trade-offs
between protein rigidity and activity at high temperatures may in
fact cause hot-adapted organisms to display depressed maximal
fitness (Ppk decreasing with Tpk)29. Indeed, the existence of
thermal constraints leading to an upper limit of prokaryotic
growth rates has been shown recently30,31. However, a compar-
ison of short- and long-term (HiB) responses of prokaryotic
populations has neither been made nor the potential effects of
responses at different timescales on ecosystem fluxes studied.

Under MTE, the global thermodynamic constraint is expected to
centre n ~0.65 eV for heterotrophs5,6. This is the long-term, inter-
specific (across-species) thermal sensitivity around which species
are expected to evolve, which we term EL (see Fig. 1a). Mean intra-
specific thermal sensitivities (i.e., acute organism or species-level
responses, here termed ES) have been found to be very similar to
this value, although the distribution is right-skewed with a median
value of ~0.55 eV2. However, these values are derived from data sets
which have largely or entirely excluded prokaryotes. Previous work
on sub-groups of prokaryotes—cyanobacteria32 and methanogenic
archaea17—has indicated comparatively high thermal sensitivities
which deviate from the eukaryote-derived MTE expectations.
Whether this deviation from MTE is a property of prokaryotes in
general has never been thoroughly tested. Given the ubiquity of
prokaryotes, this is a matter of particular importance for theories
applying MTE to whole ecosystems33.

Here, we build and analyse a global data set of TPCs in bacteria
and archaea to quantify general patterns in both the short-term
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Fig. 1 Three alternative hypotheses for short- vs. long-term thermal responses. a Hotter-is-Better: organisms adapt around a global, inter-specific, thermal
constraint (black line, Boltzmann–Arrhenius fitted to intra-specific curve peaks), such that the average intra-specific (short-term) activation energy (ES) is
statistically indistinguishable from the inter-specific (long-term) activation energy of the group of organisms (EL), and both are greater than zero. See the
Methods section for more details on the the definition and estimation of ES and EL, and the statistical methods used to differentiate between them. Note
that each intra-specific TPC represents the short-term thermal response of each organism’s population. Inset panel illustrates how this would look in an
Arrhenius plot. b Equalisation of fitness: selection overrides thermodynamic constraints, such that trait performance at Tpk is on average the same
(EL ¼ 0). Alternatively, the same effect of EL ¼ 0 may occur due to or thermodynamic constraints on enzymes in fact restricting metabolic rate (and
therefore fitness) at higher temperatures. c Weak biochemical adaptation: an intermediate scenario where EL >0, but significantly less than ES. Panel c also
illustrates the the Sharpe–Schoolfield TPC model parameters (Eq. (1), Methods)
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(intra-specific) response, and to test whether the HiB hypothesis
holds (long-term, inter-specific response) within and across
taxonomic and functional groups adapted to different tempera-
tures (Fig. 1). These data go far beyond the scope of previous tests
of the HiB hypothesis with or without microbes24, covering
practically the entire range of habitable global temperature niches
(from bacteria isolated from Antarctic saline lakes at temperatures
below 0 °C, to a strain of methanogenic archaea able to proliferate
at 122 °C under high pressure) and the majority of the phyloge-
netic diversity of prokaryotes (spanning nine bacterial phyla and
the two major archaeal phyla, Euryarchaeota and Crenarchaeota).
In total, we compare 542 growth rate TPCs and an additional 54
metabolic flux TPCs, spanning 482 unique prokaryotic strains. In
order to test the generalisations around global thermodynamic
constraints, we also assemble a data set of 381 eukaryote TPCs
spanning aquatic and terrestrial autotrophs, for direct comparison
with our prokaryote TPCs. We find that HiB holds for mesophilic
bacteria, but not thermophiles, and that mesophilic archaea also
show long-term increases in rate with temperature, although the
coupling of short- and long-term responses is less clear for these
prokaryotes. We also show that prokaryotes tend to have generally
higher thermal sensitivities than eukaryotes and conclude that as
global temperatures increase, carbon efflux from the prokaryotic
components of ecosystems is likely to increase at a greater rate
than carbon efflux from eukaryotes.

Results
Adaptation to culture conditions. First, we compared each
strain’s thermal optimum (Tpk) with the temperature at which it
was cultured (T lab) to determine whether the TPCs reflect
adaptation to growth temperature. For both bacteria and archaea,
we find a strong and significant (p < 0.00001, linear regression)
association between Tpk and T lab (Fig. 2; bacteria R2 = 0.92,
archaea R2 = 0.96), indicating that these strains are generally
well-adapted to their culturing temperature. In both archaea and
bacteria data subsets, the Tpk vs T lab line deviate significantly
from a slope of 1 (bacteria slope= 0.88, 95% CI ± 0:04, n= 165;

archaea slope= 0.92, 95% CI ± 0:05, n= 58) because Tpk tends
to fall below culturing temperature at high temperatures (Fig. 2).

Comparison of short- and long-term thermal responses. Next,
we tested the HiB hypothesis by comparing the short-term (intra-
specific) and long-term (inter-specific) thermal responses (see
Fig. 1; Methods). If there is a universal thermodynamic con-
straint, peak fitness (Ppk; rmax at Tpk) across strains should
increase with each strain’s respective Tpk (parameter EL; Fig. 1) at
the same rate as rmax would increase with temperature (parameter
ES), on average, within single a strain’s TPC. Our analysis relies
on Ppk-Tpk pairs across strains because data within strains are
largely lacking, and the HiB pattern is expected to apply across
strains within monophyletic taxonomic groups (such as archaea
and bacteria)24,34. Analysing this relationship across 416 bacterial
and 82 archaeal strains, we find that hotter is indeed better (HiB
holds) across mesophilic bacteria (ES and EL are >0, and there is
significant overlap of their 95% CIs; Fig. 3 and Table 1). However,
this result does not extend to thermophiles, where instead fitness
is on average invariant with respect to temperature. The outcome
is less clear for mesophilic archaea as whilst EL > 0, there is <50%
overlap of EL and ES CIs.

Variation in thermal sensitivity. We find mean thermal sensi-
tivity (ES) for bacteria ¼ 0:88 eV and ES for archaea ¼ 0:95 eV.
These are significantly greater than the 0.65 eV global inter-
specific constraint expected under MTE5,6 and previously
observed mean intra-specific values (calculated primarily from
eukaryote data)2. The data are right-skewed (as observed by Dell
et al.2), but even after accounting for this skew by taking the
median, activation energy still falls significantly >0.65 eV (bac-
teria median= 0.84 eV, archaea median= 0.80 eV; Supplemen-
tary Fig. 1). Furthermore, we see a consistent pattern of median
thermal sensitivity >0.65 eV throughout the lower taxonomic
groupings (Fig. 4a).
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Fig. 2 Adaptation of prokaryotic strains to lab temperatures. Peak growth temperature (Tpk) plotted against the laboratory growth temperature (Tlab), with
linear models fit for bacteria (blue) and archaea (red) and a 1:1 line shown (black dashes). In general, there is a strong association of Tpk with T lab (bacteria
intercept= 8.20, slope = 0:88 with CI ±0:04, R2 = 0.92, p < 0:00001; archaea intercept= 8.59, slope= 0:92 with CI ±0:05, R2 = 0.96, p < 0:00001,
linear regressions). The confidence intervals for the slopes do not include 1, however, indicating that prokaryotes tend to be unable to adapt to very high
culturing temperatures. Source data are provided as a source data file
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To further understand these findings, we investigated differ-
ences between groups of strains sharing functional traits, such as
their pathogenicity and their main energy-generating metabolic
pathway (Fig. 4b). Again we find mean and median thermal
sensitivity >0.65 eV in the majority of functional groups,
suggesting that this high E is a trait generally conserved across
prokaryotic organisms.

Here, we have focused on the TPCs (and activation energies)
of population growth rate. However, to understand the
implications of the short- and long-term thermal responses of
prokaryotes for ecosystem functioning, it is necessary to test
whether these reflect the activation energies of underlying
metabolic flux rates. To investigate this, we assembled another
thermal response data set (Methods) for metabolic fluxes

recorded in prokaryotes (mainly anaerobic respiratory fluxes
e.g., sulfur oxidation) and asked whether, on average, thermal
sensitivity is equivalent for growth rate and metabolic fluxes.
We find that average intra-specific E values for growth rate
TPCs were similar to, and statistically indistinguishable from
the mean activation energy for metabolic fluxes (bacteria flux
ES ¼ 0:82 eV; archaea flux ES ¼ 1:01 eV; Fig. 5a, see Supple-
mentary Table 1 for a list of fluxes analysed). Furthermore, we
compared both the prokaryotic growth rate and flux ES
distributions, with a new data set (Methods) on thermal
sensitivity of respiration in autotrophic eukaryotes. The results
(Fig. 5d) further support a lower thermal sensitivity of short-
term responses for eukaryotes than prokaryotes (ES ¼ 0:67 eV
with CI = 0.63–0.72, median= 0.57).
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archaea is less clear (Table 1). Source data are provided as a source data file

Table 1 Mean short-term and long-term activation energies and test of the HiB hypothesis

Kingdom Thermal niche n EL ES EL> 0 ES � EL HiB

Bacteria Mesophile 264 0.98 (0.75–1.25) 0.87 (0.82–0.93) TRUE TRUE TRUE
Bacteria Thermophile 114 −0.07 (−0.26–0.12) 0.85 (0.78–0.92) FALSE FALSE FALSE

Archaea Mesophile 21 0.97 (0.69–2.26) 0.60 (0.50–0.70) TRUE FALSE FALSE?
Archaea Thermophile 60 −0.09 (−0.21–0.17) 1.11 (0.95–1.28) FALSE FALSE FALSE

Estimated mean intra-specific (short-term, ES) and inter-specific (long-term, EL) thermal sensitivities (95% CI ranges in parentheses) for bacteria and archaea split by thermal niche (also see Fig. 3). As
the same data are used to calculate ES and EL , the number of data points (n) applies to both. The last column indicates whether or not the HiB hypothesis is supported. The HiB result for archaea may be
ambiguous, as described in the Results and Discussion section
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Potential ecosystem-level impacts. Our results suggest that
higher sensitivity of both short- (higher intra-specific activation
energies) and long-term (higher inter-specific activation energies
—a HiB constraint) thermal responses in mesophilic prokaryotes
may have profound implications for responses of ecosystem
fluxes to climatic warming. To illustrate this, we built a simple
mathematical model to calculate the potential change in the
relative contribution of heterotrophs to ecosystem carbon efflux
(based on biomass distributions typical of terrestrial forest eco-
systems, see the Methods section). Using our new estimates of ES
and EL to parameterise this model, we calculate the impact of
short- and long-term warming on the thermal response of carbon
flux of model ecosystems that differ in composition of autotroph
vs. heterotroph and eukaryote vs. prokaryote biomass. The model,
consistent with previous approaches applying MTE to ecosys-
tems, assumes that biomass remains stable with respect to
changes in temperature over the timescale of the calculation (i.e.,

only mass-specific metabolic rates change in response to tem-
perature)33,35. The results (Fig. 6) show that the difference in
prokaryotic vs. eukaryotic thermal sensitivities can substantially
change the predicted increase in carbon efflux due to warming on
the short- as well as long-term. For example, compared with the
case where both prokaryotes and eukaryotes have the same short-
term thermal sensitivity of 0.65 eV (the assumption made by most
current ecosystem carbon flux models36–38), using the actual
difference in sensitivity that we have found (ES 0.65 eV for
eukaryotes vs. 0.87 for mesophilic bacteria; Table 1; Fig. 3), the
flux increases by �8% with 10 °C short-term warming for a
ecosystem composition of 50% heterotrophs (50% of which in
turn are bacteria). This calculation based on the average intra-
specific activation energy is relevant to short-term increases in
ecosystem fluxes without evolution or acclimation in response to,
for example, temperature fluctuations from timescales of minutes
to days (10 °C is at the upper end of daily temperature
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fluctuations that organisms may typically experience39). When we
consider the effects of longer-term warming (such as through
gradual global climate change) on the prokaryotic sub-
community using the inter-specific (evolutionary) thermal sen-
sitivity, EL (0.98 eV), we find that modelled ecosystem flux
increases by �5% with 4 °C warming (again with 50% hetero-
trophs of which 50% are bacteria) compared with a baseline
where the long-term thermal sensitivity is 0.65 eV for all com-
ponents of the ecosystem. The actual increase in flux may indeed
be higher, but is dependent upon the ratio of prokaryotic biomass
to eukaryotic biomass within the ecosystem, a quantity for which
estimates vary widely8,13,40–42. In our model, each percentage
point increase in prokaryotic biomass within the heterotrophic
component causes a flux increase of 0:05�0:15%, depending on
the quantity of prokaryotic biomass already in the system.

Discussion
Our results demonstrate that mean thermal sensitivities for both
bacteria and archaea fall significantly >0.65 eV (Fig. 5, bacteria
ES ¼ 0:88 eV; archaea ES ¼ 0:95 eV), suggesting that prokaryotes
operate under different thermal constraints to more complex
eukaryotes. Indeed, we also present a new data set of autotrophic
eukaryotes which show thermal sensitivity consistent with the 0.65
eV MTE generalisation. These findings of high (relative to
eukaryotes) intra-specific thermal sensitivities in prokaryotes are
consistent with previous work on methanogenic archaea17 and
cyanobacteria32, but have never been demonstrated across all
major lineages of prokaryotes. In particular, Yvon-Durocher
et al.17 have argued that the high ES of methanogens are expec-
ted to translate into an increased ecosystem-level methane pro-
duction at longer temporal and spatial scales. Our results suggest
how these two different scales of response may be related—the
short-term responses may be coupled with a HiB constraint which
results in the flux at thermal optimum also increasing with (longer-
term) adaptation. Moreover, this coupling across timescales is
expected not just in methanogens but across most major meso-
philic prokaryotes, including those involved in aerobic respiration.

The data do not allow us to determine the timescale of the
adaptation resulting in the HiB pattern, but numerous previous
studies have shown rapid adaptation of prokaryotes to experi-
mental warming conditions43–45. Due to this adaptive capacity, as
global temperatures rise prokaryotes would be expected to
respond to new environmental temperatures rapidly, in effect
pushing them further along the global (inter-specific) HiB curve
(Fig. 1a). Alternatively, species sorting may occur such that
prokaryotes inherently better-adapted to higher temperatures
take advantage of temperature increases. This would have the
same overall effect, because these prokaryotes would also effec-
tively be further up the inter-specific temperature response curve
(Fig. 3). In either case, under HiB, we can expect global warming
to result in prokaryotic communities with higher metabolic rates
on average. Whilst temperature is an important constraint,
metabolic rates are also mediated by resource availability46. This
can been seen in studies which show that carbon availability and
use efficiency, community composition, and changes in microbial
abundance all play roles in soil carbon loss under warming47.
Furthermore, moisture is expected to play a significant role in
microbial CO2 efflux from soils48, a factor which is itself likely to
change with global warming. Thus overall, our results suggest that
further production of greenhouse gases from the prokaryotic
component of ecosystems is likely to increase at a greater rate
than that by component eukaryotic organisms (Fig. 6), albeit
mediated by other biotic and abiotic factors. Our data comprising
TPCs of exponential growth rates under weak nutrient limitation
may not be specific to all natural systems, however, recent work

shows that repeated assembly dynamics following perturbations
are key to understanding ecosystem functioning49. Therefore, our
empirical results and our model may be interpreted as being
especially relevant to ecosystem respiration under intermittent
perturbations, as would be expected in natural, open ecosystems.
This also means that future work should focus on quantifying the
TPCs of prokaryotic populations under different levels of nutrient
limitation.

While in general, we see a tendency towards high thermal
sensitivity (ES) in prokaryotes, there are taxonomic sub-groups
within our data set for which this is not the case (Fig. 4). For
example, ES for mesophilic archaea as a whole does not deviate
significantly from the MTE 0.65 eV average (Table 1). This is
largely because this subgroup is primarily comprised strains from
Halobacteria, which have thermal sensitivities significantly
<0.65 eV (Halobacteria ES = 0.46; CI= 0.38–0.58; Fig. 4a). This is
likely a result of their ecologically extreme niche imposing unu-
sual constraints on their physiology (these archaea have been
isolated only from high salinity lakes). In addition, despite
mesophilic archaea displaying a clear long-term increase in rate
with temperature, we found only a very small overlap in CIs
between ES and EL for these strains which may not be enough to
infer equivalence50, although mapping p-values onto % overlap of
bootstrapped CIs is not a trivial task51. One possibility is that
mesophilic archaea follow an adaptive long-term response which
is not coupled to their short-term thermal sensitivity, however,
this result may also be due to shortcomings of our data set for
these prokaryotes. In general, it may be harder to make gen-
eralisations about short- and long-term thermal responses across
taxa for archaea as a whole, because these prokaryotes are partly
typified by their propensity to adapt to different types of extreme
environments52. That is not to say that archaea do not contribute
significantly to ecosystem functioning in benign environments,
however (as demonstrated through our exhaustive data collec-
tion), the thermal performance of these organisms has been
generally less well-characterised. More work is necessary in order
to fully understand the coupling of short- and long-term thermal
responses in archaea.

We also note that while the majority of heterotrophic bacteria
in our data set respire aerobically, there are a number of anaerobic
strains, the majority of which were grown under various fer-
mentation conditions. However, when we consider these groups of
bacteria separately, we see no significant difference between their
mean intra-specific thermal sensitivities (aerobic ES = 0.86, CI=
0.81–0.91, n= 221; fermentation ES = 0.86, CI= 0.77–0.96, n=
62). Ultimately, despite all this variation, we find that both,
the short-term (intra-specific) and long-term (HiB hypothesis)
amplification of metabolic rate holds true for the mesophiles
(≲45 °C), temperatures which encompass most of the biomass on
the planet.

Following previous approaches applying MTE to ecosystem
functioning, such as Enquist et al.35 and Schramski et al.33, our
model assumes that biomass remains constant with temperature,
and therefore does not vary at the timescale of the calculation.
That is, it assumes that only biomass-specific CO2 efflux changes
with temperature. However, realised changes to net ecosystem flux
will also depend on changes in the biomass of different ecosystem
components with temperature. How warming is likely to alter the
overall abundances of ecosystem constituents, from microbes to
plants and animals, is currently not well-understood. Future work
to establish the effects of warming on population dynamics is
therefore needed in order to fully understand the implications of
our findings. Also, for simplicity, when parameterising our eco-
system model we used ES and EG calculated from all of the
mesophilic bacteria in the data set, as we expect a huge amount of
variation in the taxa present at the ecosystem scale. Future work
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can build on this by considering more specific situations where
certain prokaryotes dominate in certain environments based on
global biogeographic studies53. However, the majority of microbial
taxa are known only from sequencing data54, for example Acid-
obacteria are thought to make up in the region of 50% of soil
biodiversity55, yet very few strains have actually been cultured and
therefore have TPCs available56. Thus in practice, it may not be
feasible to accurately parameterise this sort of model based on
patterns of microbial biogeography and therefore, using a global
average is appropriate. Climate warming may also be accompanied
by more extreme fluctuations which may be large enough to push
organisms beyond their operational temperature range (OTR),
within which the Boltzmann-Arrhenius model is appropriate57. If
these fluctuations were frequent enough to have strong effects on
the community, using the Sharpe–Schoolfield model as an alter-
native to Boltzmann–Arrhenius may be an interesting approach to
predicting the effects of extreme warming events at the ecosystem
level. However, parameterising this would again require the
data on the specific species present in a given ecosystem and
their individual TPCs, which is outside of the scope of our
current study.

We have focused on the ecosystem consequences in the face of
global change, but our results also have implications for under-
standing prokaryotic physiology. We are not aware of any pre-
vious work showing that prokaryotes differ systematically in their
thermal sensitivity from eukaryotes. Therefore, further studies are
needed to explore the mechanistic basis of this difference, and
may reveal a major physiological transition mediated by an
increase in cellular complexity as well as multi-cellularity in
eukaryotes58,59. Also, our comparisons for growth rate and
metabolic flux E are simply averages across strains. Direct within-
strain comparisons of growth rate (a slower thermal response)
and the more instantaneous metabolic flux TPCs will be needed
in order to fully understand the coupling of positive intra-specific
and inter-specific thermal responses we have found here.

Our results are also important for understanding differences in
thermal physiology between taxa, given our findings of HiB for
mesophilic bacteria, but invariant inter-specific fitness with
temperature for thermophiles (Fig. 3). Thermophiles have
evolved specific adaptations to extreme temperature stress, such
as mechanisms to cope with increased membrane permeability at
high temperatures60 and thus adaptation to such niches may
incur a fitness cost to thermophiles as seen in our results. This
result is in concurrence with an investigation of the maximum
growth rates of life on Earth, which found increases in microbial
growth up to a peak before an attenuation of growth rates in
warmer adapted organisms30,31. Our results also suggest a limit to
thermal adaptation as we find that strains cultured at very high
temperature tend to display lower than expected thermal optima
(Fig. 2). These results have implications for theoretical models of
the thermal limits for life.

In summary, our results significantly deviate from current
assumptions about the thermal sensitivity of heterotrophic
respiration in ecosystems, and should be considered in ongoing
efforts to model the impacts of climate change on ecosystem
fluxes. More work needs to be undertaken to address whether
intra- (short-term) and inter (long-term)-specific thermal
responses are similarly conserved across other groups of organ-
isms that are important for ecosystem function, such as fungi and
insects in terrestrial, and phytoplankton and zooplankton in
marine ecosystems.

Methods
Data collection. We compiled a data set of published prokaryotic thermal per-
formance curves (TPCs) by searching the literature for papers with these data and
using digitisation software to collect the thermal performance point estimates.

Candidate TPC data were identified via manual searches of google scholar and
pubmed databases. Search terms, such as ‘bacteria’, ‘bacterium’, ‘archaea’,
‘archaeon’, ’temperature’, ‘temperature response’, ‘thermal response’, ‘growth’,
‘adaptation’, were used to find papers with response data particularly for growth
rates. Later searches included terms such as ‘characterisation’, ‘isolation’, ‘nov.’,
‘novel’, ‘gen.’, ‘sp.’, as it became clear that thermal responses were often tested in
publications describing newly isolated species/strains. When presented as a
response curve figure, ‘Plot Digitizer’ software61 was used to extract data points,
including error bounds when reported. The ‘Taxize’ R package62 was used to
standardise taxonomy of extracted data to the NCBI database. The papers were also
manually searched to collect data on growth conditions as well as other metadata
where possible (historical lab growth conditions, sampling location). In instances
where doubling rates or doubling times were reported, we used Doubling time
td ¼ lnð2Þ=μ to calculate the maximum specific growth rate. Raw data were nor-
malised to rates per second and degrees Celsius for use in modelling comparisons.
In total, we collected 542 prokaryotic growth rate TPCs.

Although we primarily collected growth rate data as a measure of fitness in
order to test HiB, we additionally collected 54 TPCs covering various metabolic
fluxes for comparison to growth rate TPCs. Our complete prokaryote data set
comprises 596 TPCs from 482 unique prokaryote strains across 239 published
studies.

Finally, we compiled thermal response data for respiration rates in autotrophs
from the literature using the same methods for digitisation and data collation as
for the prokaryote data set. In total, this autotroph data set comprises 381
respiration rate TPCs from 140 unique autotroph species (98 vascular plants,
4 mosses, 11 green algae, 22 red algae and 5 brown algae species).

Biological replicates and pseudoreplicates. We use prokaryotic ‘strains' to
designate separate prokaryotic taxonomic entities with potentially differing TPCs.
If a single study provided multiple TPCs from the same prokaryotic strain under
the same conditions, these were considered pseudoreplicates. In these cases, all data
were collected and a single Sharpe–Schoolfield fit (see Model fitting) was computed
for the combined set of points, yielding a single set of TPC parameters. Where
multiple TPCs were provided for the same strain under different growth condi-
tions, these were considered as separate biological replicates, however in practice
this is only the case for two replicates in each of two different strains in our data
set. Where TPCs were obtained from prokaryotes identified only to the species level
(or higher), these were considered biological replicates as likely representing dif-
ferent strains of those species.

The eukaryotic autotroph data set did contain organisms identified as the same
species grown under similar conditions. Given the slower generation times of
eukaryotes and thus slower species divergence, we do not consider these as
representative of different strains, as we do for prokaryotes, and thus consider them
pseudoreplicates. To remove pseudoreplicates, we compared Sharpe–Schoolfield
model fits (see Model fitting) from each replicate and chose the one with the best fit
as most representative of thermal performance for that species, discarding data
with worse fits.

Model fitting. To each TPC in the data set, we fitted a modified
Sharpe–Schoolfield model63, Eq. (1):

BðTÞ ¼ B0
e
�E
k � 1

T� 1
Tref

� �

1þ E
ED�E e

ED
k

1
Tpk

�1
T

� � ð1Þ

Here, T is temperature in Kelvin (K), B is a biological rate, B0 is a temperature-
independent metabolic rate constant approximated at some (low) reference
temperature Tref , E is the activation energy in electron volts (eV) (a measure of
thermal sensitivity), k is the Boltzmann constant (8:617 ´ 10�5 eV K−1), Tpk is the
the temperature where the rate peaks, and ED the deactivation energy, which
determines the rate of decline in the biological rate beyond Tpk. We fit this model
to individual TPCs and solve for T ¼ Tpk to calculate the population growth rate at
Tpk (Ppk) for each strain. Note that this has been reformulated from the model
presented in the original paper, to include Tpk as an explicit parameter64.

Each strain’s TPC has a potentially different Tpk and Ppk . Compiling
these values across strains yields an inter-specific thermal response curve
(Fig. 1a). TPCs without a peak are thus excluded from this analysis. We fit the
Boltzmann–Arrhenius equation (Eq. (2), essentially the numerator in Eq. (1)) to
these peak values to calculate inter-specific activation energy. To account for
uncertainty in the original Sharpe–Schoolfield model fits to the intra-specific
curves, we fitted Boltzmann–Arrhenius using a weighted regression (see
accounting for uncertainty).

B ¼ B0e
�E=kT ð2Þ

All Boltzmann–Arrhenius and Sharpe–Schoolfield model fitting were
performed in Python with the NumPy package, using the Levenberg–Marquardt
ordinary non-linear least-squares regression method.
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Comparing short- and long-term thermal responses. We determined whether
HiB by testing whether the activation energies from intra- (short-term) and inter-
specific (long-term) TPCs were (statistically) significantly different. In order
to provide a comparison between intra- (ES) and inter-specific (EL) activation
energies, we used bootstrapping to generate confidence intervals (CIs) around
the mean in each case. To provide boostrapped CIs for EL from the modified
Boltzmann–Arrhenius fits, the data were re-sampled with replacement 1000 times,
with the model re-fitted to this data each time and the CIs defined as the 2.5th and
97.5th percentiles of E values extracted from these fits. ES was calculated as the
weighted mean ES for the group (see methods), and CIs were taken as the 2.5th and
97.5th percentiles from the resultant distribution of ES values from a bootstrap of
the weighted mean.

We then determined whether the data were consistent with either of the three
hypotheses (Fig. 1) by comparing the overlap of confidence intervals of the relevant
E estimates. First, we tested whether ES was greater than zero (null hypothesis that
the CI includes zero). Second, we tested whether EL was greater than zero (null
hypothesis that the CI includes zero). Finally, if both ES and EL were positive,
we tested whether they were significantly different to each other (null hypothesis,
that the CIs for ES and EL do not overlap). Under a HiB scenario, Ppk will increase
with Tpk across strains, and according to MTE this is best quantified by a
Boltzmann–Arrhenius model. As a result, the Boltzmann–Arrhenius activation
energies from the intra- and inter-specific responses should be positive and any
differences between them not statistically significant, i.e., the confidence intervals of
ES and EL should overlap each other, but not zero. Alternatively, if growth rates are
not constrained by thermodynamics and Ppk does not increase with temperature,
then EL will be close to zero (CI for EL includes zero), and HiB can be rejected.
Finally, in scenarios where thermodynamic constraints may be partially evident but
somewhat overcome by adaptation, ES and EL will both be positive, but with ES

being significantly greater than EL (i.e., ES > EL > 0).

Accounting for statistical uncertainty. Weighted means were used to account for
uncertainty in Sharpe–Schoolfield point estimates when calculating ES and when
fitting inter-specific Boltzmann–Arrhenius curves. After performing
Sharpe–Schoolfield fits, we extracted the E and Ppk point estimates as well as the
covariance matrix. We then sampled 1000 times from a bivariate distribution
accounting for the covariance, producing 1000 model parameter combinations. We
used these parameters to generate 1000 different Sharpe–Schoolfield curves, pro-
viding a distribution of E and μpk from which we took the standard deviations (SDE

and SDμ) as a measure of uncertainty. In some cases the Sharpe–Schoolfield fit did
not produce a covariance matrix and these fits were excluded from further analysis.

When combining E values across strains to calculate ES, we took weighted
arithmetic means of E to account for uncertainty in the original fits, where
Weight ¼ 1=ðSDE þ 1Þ. Similarly, when fitting Boltzmann–Arrhenius, we apply a
weighting to μpk where Weight ¼ 1=ðSDμ þ 1Þ.

Applying these weightings does not alter the main results we obtain from this
study in terms of whether the HiB hypothesis is accepted or not for different
groupings, however, we felt that it was important to acknowledge and account for
error in the underlying Schoolfield fits so that our results were not skewed by poor
parameter estimates from questionable fits, hence this step was included.
Supplementary Fig. 1 illustrates the differences between ES calculated with and
without a weighting – applying a weighting pushes ES down a little, likely due to
high E values obtained from fits to lower quality data. In either case, with or
without a weighting, ES falls significantly above the 0.65 eV MTE average activation
energy for both Bacteria and Archaea.

Taxonomic and physiological groupings. Psychrophiles and mesophiles inhabit
low to medium temperature ranges, while thermophiles and hyperthermophiles
grow at much higher temperatures65. The distinction between these groups is
usually defined relatively arbitrarily, with mesophiles often considered strains with
thermal optima up to 45 °C, and thermophiles those with thermal optima of 55 °C
and above65. Corkrey et al.30 found a peak in microbial growth rates at ~42 °C
(mesophile peak) followed by an attenuation of maximum growth rates until a
second peak at ~67 °C (thermophile peak), suggesting a biological transition
between mesophiles and thermophiles.

In order to determine whether it was appropriate to consider mesophiles and
thermophiles separately, we performed a break-point analysis on our data set using
the ‘Segmented’ R package66. Segmented is not compatible with non-linear least-
squares (nls) fitting, so this was performed with a linearised version of
Boltzmann–Arrhenius, i.e., x � y where x ¼ 1=ðkTpkÞ and y ¼ logðμpkÞ. As this
process was merely to confirm whether it was appropriate to split the data into
mesophiles and thermophiles as suggested by eye, it is not important that these
linearised fits may give slightly different slope and intercepts to the weighted nls
fits. Using this methodology, we determined significant break-points for bacteria
and archaea within our growth rates data set at 40.48 °C and 46.21 °C, respectively.
These are similar to the �42 °C mesophile growth rate peak seen by Corkrey
et al.30 and were thus used as cut-off points for defining mesophiles and
thermophiles in our analysis. For this work, we provide no lower limit for
mesophiles, essentially grouping psychrophiles and mesophiles together. Were

psychrophiles to display a pattern different to mesophiles, we would expect this to
have shown up in the break-point analysis, but only one break point (separating
mesophiles and thermophiles) was found for both bacteria and archaea.

In addition, archaea are typified by their adaptations to energetically demanding
niches, while in contrast bacteria perform better in more ambient environments52.
A major physiological difference between these taxa lies in their fundamentally
divergent membrane structures. This affects these organisms’ abilities to maintain
proton gradients and thus drive metabolism under different conditions52, a
difference that may be particularly important for thermal performance. As such, we
separate bacteria and archaea in our analysis as disparate organisms with divergent
evolutionary histories.

In order to classify prokaryotes by the energy generating metabolic processes
that they use, we took note of the growth conditions used when initially digitising
the TPC data. For the majority of heterotrophic bacteria and archaea, this was
simply whether they were grown under aerobic or anaerobic (fermentative)
conditions. However, there are also a number of strains utilising more exotic
metabolic processes such, as methanogenesis, sulfur reduction, etc. In these cases,
we matched taxa against those able to utilise certain metabolic reactions according
to Amend and Shock67 before manually checking the culture conditions in each
study for the metabolites required for certain metabolic processes.

We also categorised taxa by their status as potential pathogens. We matched
taxon names against the database of host-pathogen interactions provided in
Wardeh et al.68 to understand whether each strain was potentially pathogenic, and
what taxa they were known to infect.

Ecosystem carbon flux model. To quantify the effect of differences in activation
energy of respiration between prokaryotes and eukaryotes on carbon flux, one can
calculate the fold increase in flux (Fx) of an ecosystem as,

Fx ¼
FTþx

FT
; ð3Þ

where x is the temperature increase (at the end of a warming scenario), and FT and
FTþx are the fluxes at the two temperatures. Because ecosystem carbon flux at night
(i.e., without photosynthesis) is the sum of autotrophic and heterotrophic
respiration rates weighted by the biomasses of these compartments, we can re-write
Fx as:

Fx ¼
ð1� δÞcaee

�Eae
kðTþxÞ þ δ βchpe

�Ehp
kðTþxÞ þ ð1� βÞchee

�Ehe
kðTþxÞ

� �

ð1� δÞcaee
�Eae
kT þ δ βchpe

�Ehp
kT þ ð1� βÞchee

�Ehe
kT

� � : ð4Þ

Here, each compartment’s total flux contribution (identified by a subscript:
autotrophic eukaryotes= ae, heterotrophic prokaryotes= hp; heterotrophic
eukaryotes= he) is modelled as a Boltzmann–Arrhenius equation, with c a
normalisation constant. Each compartment’s contribution is weighted by the
biomass proportionality constants: δ is the proportion of heterotrophic biomass in
the ecosystem, while β is the proportion of prokaryotic biomass within the
heterotrophic component (so 1� β is the proportion of non-prokaryotic
heterotrophs, such as fungi or insects). We do not use the Sharpe–Schoolfield
model here because it does not apply to long-term thermal responses (Fig. 1),
whilst for short-term responses most warming as well as temperature fluctuations
are expected to occur within an operational temperature range, which excludes
temperatures greater than Tpk (the heat-stress region)57. We do not include any
potential contribution of autotrophic prokaryotes (such as cyanobacteria), as these
are not expected to provide a significant flux contribution to a typical terrestrial
ecosystem. Alternative models and parameterisations for ecosystems which include
cyanobacteria (i.e., aquatic ecosystems) are described in the Supplementary
Methods and further discussed in the Supplementary Discussion.

We then use Eq. (4) to calculate the percent change in ecosystem flux due to
differences in activation energies of the three compartments (Eae, Ehp and Ehe):

Fx;2

Fx;1
� 1

 !
� 100; ð5Þ

where Fx;2 and Fx;1 are the warming-induced flux changes in ecosystems with and
without differences in activation energies of the compartments, respectively (the
value of the heat map in Fig. 6). That is, for Fx;1, all E values, i.e., Eau, Ehp and Ehe

in Eq. (4) = 0.65 eV. This is the assumption made by most current ecosystem
carbon flux models36–38. For Fx;2, the differing activation energies were
parameterised using either the mean of the estimated Es for the short-term (intra-
specific) or the long-term (inter-specific) TPCs (Table 1; Fig. 3). For this, we used
estimates of EL and ES from mesophilic bacteria (long-term evolutionary EL =
0.98 eV, short-term instantaneous ES = 0.87 eV) only, because the archaea in our
data are largely composed of strains adapted to ecologically extreme niches, which
are largely irrelevant from a global warming perspective. Archaea are known to
play important roles in carbon cycling across various ecosystems however, so were
more data available for the thermal performance of non-extremophilic archaea our
model could be parameterised with their inclusion. Alternative model formulations
to include archaea are described in the Supplementary Methods.
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We calculated the emergent E of the Fx;2 ecosystems (flux response to warming
when prokaryotic and eukaryotic thermal sensitivities differ), which is the the
average of activation energies for each ecosystem compartment weighted by its
biomass proportion:

E ¼ ð1� δÞEae þ δðβEhp þ ð1� βÞEheÞ: ð6Þ
We also calculated the emergent Q10 of the Fx;2 ecosystems, as it is a widely

used measure in climate change models of carbon flux37,69:

Q10 ¼ ðFx;2Þ
10
x : ð7Þ

We chose a warming magnitude x= 10 °C for short-term responses because
this at the upper end (e.g., generally, at higher latitudes) of the range of daily (over
24 h) fluctuations that organisms experience39. For long-term warming scenarios,
we used x ¼ 4 �C, the approximate upper end of the range for the year 2100
projected by the IPCC70.

The biomass proportions δ and β were varied to capture the effect of different
ecosystem compositions. In a typical forest ecosystem, the contribution of
autotrophic to heterotrophic (mostly soil) respiration has been estimated to be
approximately 50% each40. This heterotrophic component would be comprised
largely of prokaryotes and soil fungi biomass, the ratios of which have shown to
vary widely depending on soil type and the experimental methodology used13.
Here, we vary the percentage of heterotrophs within an ecosystem (δ) between 25
and 75%, and the percentage of prokaryotes within heterotrophs (β) between 25
and 75% to generate a range of potential scenarios in Fig. 6. For simplicity, and
consistent with current approaches33,35, this model does not include changes in the
relative biomass of ecosystem components with warming.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 2, 3, 4 and 5 and Supplementary Figs. 1 and 2 are
provided as a Source Data file. All other raw data is available for download from the
following git repository: https://github.com/smithtp/hotterbetterprokaryotes.

Code availability
The data git repository also includes all of the thermal model fitting python code as well
as R code to reproduce the results and figures in this manuscript, excluding figure 1
which is a conceptual diagram. https://github.com/smithtp/hotterbetterprokaryotes.
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